Epigenetics, Epigenomics & Gene Regulation

X chromosome inactivation. Gene regulation, chromatin modification, epigenetic silencing.

Characterization of the stem cell state and its control by comparative global gene expression and proteomics analyses.

Mendelian disorders of body weight regulation and their relevance to common obesity and metabolic syndrome. Transgenic/knockout mice with perturbations of energy intake and energy expenditure. Weaver syndrome – mutation detection and new therapies. Clinical uses of next-generation sequencing for rare versions of common disease. Personalized Genomics.

Gene regulation, leukemic stem cell biology, basic and translational leukemia research, signal transduction, proteomics.

Stem cells, developmental control, telomere biology, self-renewal and genetic instability.

Role of imprinted genes in mammalian development. Epigenetics of embryonic stem cells and germ cell lineage. Gene targeting.

Interplay between transcription, DNA methylation and histone modifications in the germ line, early development and disease

Gene regulatory changes in malignancy, ribosomal variation in cancer, impact of transposable elements on mammalian genes.

Genomics, bioinformatics, cancer biology, genetics, epigenetics

Genetics and epigenetics related to fetal development and obstetrical complications of pregnancy such as fetal growth restriction, preterm birth, and birth defects. We use genomic and bioinformatic techniques to understand pathological processes related to placenta that affect the fetus and newborn.

Genome maintenance, DNA repair, RNA processing, DNA replication stress, Chromatin Remodelling, Stress responses, Protein quality control, Genotoxins, Saccharomyces cerevisiae, Mutation Signatures.